Probability Unit

Vocabulary and Concepts

Probability

- Probability is a measure of how likely an event can occur.
- It is represented as a number between 0 and 1.

- This number can be a fraction, a decimal or a percent.

$$
P(O)=\frac{\text { Number of Orange pompoms }}{\text { Number of total pompoms }}
$$

P (outcome) = Number of favorable outcomes
Total number of outcomes

Sample Space, Tree Diagram and Fundamental Counting Principle

Sample space:

- The sample space of an experiment is the set of all possible outcomes of that experiment.
- The sample space of tossing a coin is: \{head, tail\}
- For any sample space, the SUM of all possible outcomes is 1 .

Tree Diagram:

- A tree diagram is a visual representation of all possible combinations or outcomes of a given sample space.
- The tree diagram starts with one item (start point) that branches into two or more, each of which branch into two or more, and so on.
- It looks like a tree, with one trunk (start point) and multiple branches.

Fundamental Counting Principle:

A mathematical rule to figure out the total number of possible combinations or outcomes.
Example:
There are m ways to do one thing, n ways to do another. As per this rule, there are m * n ways of doing both.
2 pants * 3 shirts * 2 caps $=2^{*} 3^{*} 2=12$ different ways you can build your outfit!

Draw a Tree Diagram for tossing a coin three times

First Toss $=2$ choices
Second Toss $=2$ choices
Third Toss $=2$ choices

Sample Space:

\{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}

Fundamental Counting

Principle:

- 2*2*2 = 8 total possible outcomes
-??Think?? If you toss a coin 14
Times, how many total possible
Combinations or outcomes are there!!!
-Simple enough... $2^{14}=$ \qquad

$$
\begin{gathered}
2 * 2 * 2=8 \\
2^{3}=8
\end{gathered}
$$

Charlotte is playing a board game. To move her game piece, she needs to roll the same number on two number cubes. Represent the sample space and find all the ways Charlotte could roll the same number using Tree Diagram
Sample space (list of all possible outcomes) of rolling a number cube twice:

- For our first roll (choice) - 6 possible outcome
- For our second roll (choice) - 6 possible outcome

Total possible outcome using Fundamental Counting Principle
6 * 6 = 36
The list of all 36 outcomes (SAMPLE SPACE) can be obtained by making a list in a same manner you all are familiar with in Science Class !!!!! 'Punnett Square'

	$\underline{\mathbf{1}}$	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$	$\underline{4}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$
$\underline{\mathbf{1}}$	1,1	1,2	1,3	1,4	1,5	1,6
$\underline{\mathbf{2}}$	2,1	2,2	2,3	2,4	2,5	2,6
$\underline{\mathbf{3}}$	3,1	3,2	3,3	3,4	3,5	3,6
$\underline{4}$	4,1	4,2	4,3	4,4	4,5	4,6
$\underline{\mathbf{5}}$	5,1	5,2	5,3	5,4	5,5	5,6
$\underline{\mathbf{6}}$	6,1	6,2	6,3	6,4	6,5	6,6

Mutually Exclusive Events

- Events that can not happen at the same time
- Turning left and turning right are Mutually Exclusive (you can't do both at the same time)
- Cards: Kings and Aces are Mutually Exclusive

!!!Give it a try!!!

- Tossing a coin ?
- Turning left and scratching your head?
- Drawing King of Hearts?
- Choosing True/False?

Complement of an Event

- All outcomes that are NOT favorable events/results
- When an event is \{Heads\}, the complement is \{Tails\}
- When and event is \{Monday, Wednesday\} the complement is $\{\ldots, \quad$ ___, \quad _____ $\}$
- When an event is \{ Hearts\}, the complement is \{ Spades, Clubs, Diamonds, Jokers\}
- Make one of your own complement event!

Independent Events

- What happened in previous event will NOT affect the result
 of current event

You toss a coin and it comes up "Heads" three times ... what is the chance that the next toss will also be a "Head"?

- The chance is simply $1 / 2$ (or 0.5) just like ANY toss of the coin.
- What it did in the past will not affect the current toss!

Binomial Probability

- Events or situations like 'choosing true or false answers' that have exactly two outcomes are Binomial Situations.
- The Probability of getting one of the two possible outcomes (true or false) is known as Binomial Probability.
- Think of more!!!.....

1) Head or Tail
2) Boy or Girl

Theoretical and Experimental Probability

Theory
A collection of ideas; a hypothesis to explain an outcome or event.
Experiment
A series of orderly trials carried out to verify the hypothesis by recording the results or observations.

Trial and Outcome
An experiment is a TRIAL and the result of an experiment is an OUTCOME.

Theoretical Probability
A probability that is predicted by analyzing a situation/scenario. Written
as a ratio of... $\quad \frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}$

Experimental Probability

A probability that is determined by performing series of trials and recording observations. Written as a ratio of....

Number of times an outcome occurred
Total number of trials

