Probability Unit

Vocabulary and Concepts

Probability

- Probability is a measure of how likely an event can occur.
- It is represented as a number between 0 and 1.

• This number can be a fraction, a decimal or a percent.

P (O) = <u>Number of Orange pompoms</u> Number of total pompoms

P (outcome) = <u>Number of favorable outcomes</u> Total number of outcomes

Sample Space, Tree Diagram and Fundamental **Counting Principle**

Sample space:

- The sample space of an experiment is the set of all possible outcomes of that experiment.
- ٠
- The sample space of tossing a coin is: {head, tail} For any sample space, the SUM of all possible outcomes is 1. •

Tree Diagram:

- A tree diagram is a visual representation of all possible combinations or outcomes of a given sample space.
- The tree diagram starts with one item (start point) that branches into two or more, each of which branch into two or more, and so on.
- It looks like a tree, with one trunk (start point) and multiple branches. ۲

Fundamental Counting Principle:

A mathematical rule to figure out the total number of possible combinations or outcomes.

Example:

There are **m** ways to do one thing, **n** ways to do another. As per this rule, there are **m** * **n** ways of doing both.

<u>2 pants * 3 shirts * 2 caps = $\underline{2}*3*2 = 12$ different ways you can build your</u> outfit!

Draw a Tree Diagram for tossing a coin three times

2*2*2=8

23 = 8

First Toss = 2 choices Second Toss = 2 choices Third Toss = 2 choices Sample Space: { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT } **Fundamental Counting** Principle : - 2*2*2 = 8 total possible outcomes -??Think?? If you toss a coin 14 Times, how many total possible Combinations or outcomes are

there!!!

-Simple enough... 2^{14} =

<u>Charlotte is playing a board game. To move her game piece, she needs to roll the same number on two</u> <u>number cubes. Represent the sample space</u> and find all the ways Charlotte could roll the same number <u>using Tree Diagram</u>

Sample space (list of all possible outcomes) of rolling a number cube twice:

- For our first roll (choice) 6 possible outcome
- For our second roll (choice) 6 possible outcome

Total possible outcome using Fundamental Counting Principle

6 * 6 = 36

The list of all 36 outcomes (SAMPLE SPACE) can be obtained by making a list in a same manner you all are familiar with in Science Class !!!!! 'Punnett Square'

	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>
1	1,1	1,2	1,3	1,4	1,5	1, <mark>6</mark>
<u>2</u>	2,1	2,2	2, <mark>3</mark>	2, 4	2,5	2, <mark>6</mark>
<u>3</u>	3,1	3, <mark>2</mark>	3,3	3,4	3, 5	3, <mark>6</mark>
<u>4</u>	4,1	4,2	4,3	4,4	4,5	4,6
<u>5</u>	5, 1	5,2	5, <mark>3</mark>	5, 4	5, 5	5,6
<u>6</u>	6, 1	6, 2	6, <mark>3</mark>	6,4	6, <mark>5</mark>	<mark>6,6</mark>

Mutually Exclusive Events

- Events that can not happen at the same time
- Turning left and turning right are Mutually Exclusive (you can't do both at the same time)
- Cards: Kings and Aces are Mutually Exclusive
 <u>IIIGive it a tryIII</u>
- Tossing a coin ?
- Turning left and scratching your head?
- Drawing King of Hearts?
- Choosing True/False?

Complement of an Event

- All outcomes that are NOT favorable events/results

- When an event is {Heads}, the complement is {Tails}
- When and event is {Monday, Wednesday} the complement is { ____, ___, ____, ____, _____ }
- When an event is { Hearts}, the complement is { Spades, Clubs, Diamonds, Jokers}
- Make one of your own complement event!

- What happened in previous event will NOT affect the result

of current event

You toss a coin and it comes up "Heads" three times ... what is the chance that **the next toss** will also be a "Head"?

- The chance is simply ½ (or 0.5) just like ANY toss of the coin.
- What it did in the past will not affect the current toss!

Binomial Probability

- Events or situations like 'choosing true or false answers' that have exactly two outcomes are Binomial Situations.
- The Probability of getting one of the two possible outcomes (true or false) is known as Binomial Probability.
- Think of more!!!.....
- 1) Head or Tail
- 2) Boy or Girl

Theoretical and Experimental Probability

<u>Theory</u> A collection of ideas; a hypothesis to explain an outcome or event.

Experiment A series of orderly trials carried out to verify the hypothesis by recording the results or observations.

Trial and Outcome An experiment is a TRIAL and the result of an experiment is an OUTCOME.

<u>Theoretical Probability</u> A probability that is predicted by analyzing a situation/scenario. Written as a ratio of... <u>Number of favorable outcomes</u> Total number of outcomes

Experimental Probability

A probability that is determined by performing series of trials and recording observations. Written as a ratio of....

Number of times an outcome occurred Total number of trials